If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-16q+13=0
a = 3; b = -16; c = +13;
Δ = b2-4ac
Δ = -162-4·3·13
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-10}{2*3}=\frac{6}{6} =1 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+10}{2*3}=\frac{26}{6} =4+1/3 $
| -8v-4=-7v-4 | | 21(2−x)+12x=44x | | 2(6x+1)=3(4x+3) | | 6+4x=-2x+72 | | -3(w+2)=2w-5+3(3w+1) | | 3(2x+5)=50+35 | | -3x+2+4x=-20+16 | | 3(6-8x)=18+7x | | 3-p=-(2p-5) | | 3x+5x-10=15 | | Y/3+9=2y-6 | | 5g+3(-6=2g)=1-g | | Y/3+y/3=9 | | 88=-5d+8 | | 450x-975x=5 | | 2/3(x-1/6)=2(1/12x-3/4) | | -3(2y-1)+4y=9+2(3y-6) | | 10-(-20m)=60 | | 17=5r-3 | | 4=w8/9 | | -u+234=118 | | 4x-5+x+5=3x+14 | | 3c-4=7c+10 | | 12x-4=12x-9 | | 5(w+5)=-3(5w-9)+8w | | 260-x=105 | | 5(w+5)=-3(5w-9)+84 | | 1/3(7-5x)=10 | | 255=160-w | | 5x-17+x+10=3x+17 | | 4(1/5x+5)=96/5 | | x+2/3=-1/21 |